国产毛片a精品毛-国产毛片黄片-国产毛片久久国产-国产毛片久久精品-青娱乐极品在线-青娱乐精品

這樣講你就懂了!大牛給你介紹《信號與系統》

發布時間:2016-2-26 09:57    發布者:designapp
關鍵詞: 傅立葉變換 , 卷積
  引子
  很多朋友和我一樣,工科電子類專業,學了一堆信號方面的課,什么都沒學懂,背了公式考了試,然后畢業了。
  先說"卷積有什么用"這個問題。(有人搶答,"卷積"是為了學習"信號與系統"這門課的后續章節而存在的。我大吼一聲,把他拖出去*斃!)
  講一個故事:
  張三剛剛應聘到了一個電子產品公司做測試人員,他沒有學過"信號與系統"這門課程。一天,他拿到了一個產品,開發人員告訴他,產品有一個輸入端,有一個輸出端,有限的輸入信號只會產生有限的輸出。
  然后,經理讓張三測試當輸入sin(t)(t卷積!"
  從此,張三的工作輕松多了。每次經理讓他測試一些信號的輸出結果,張三都只需要在A4紙上做微積分就是提交任務了!
  ----------------------------------------
  張三愉快地工作著,直到有一天,平靜的生活被打破。
  經理拿來了一個小的電子設備,接到示波器上面,對張三說: "看,這個小設備產生的波形根本沒法用一個簡單的函數來說明,而且,它連續不斷的發出信號!不過幸好,這個連續信號是每隔一段時間就重復一次的。張三,你 來測試以下,連到我們的設備上,會產生什么輸出波形!"
  張三擺擺手:"輸入信號是無限時長的,難道我要測試無限長的時間才能得到一個穩定的,重復的波形輸出嗎?"
  經理怒了:"反正你給我搞定,否則炒魷魚!"
  張三心想:"這次輸入信號連公式都給出出來,一個很混亂的波形;時間又是無限長的,卷積也不行了,怎么辦呢?"
  及時地,上帝又出現了:"把混亂的時間域信號映射到另外一個數學域上面,計算完成以后再映射回來"
  "宇宙的每一個原子都在旋轉和震蕩,你可以把時間信號看成若干個震蕩疊加的效果,也就是若干個可以確定的,有固定頻率特性的東西。"
  "我給你一個數學函數f,時間域無限的輸入信號在f域有限的。時間域波形混亂的輸入信號在f域是整齊的容易看清楚的。這樣你就可以計算了"
  "同時,時間域的卷積在f域是簡單的相乘關系,我可以證明給你看看"
  "計算完有限的程序以后,取f(-1)反變換回時間域,你就得到了一個輸出波形,剩下的就是你的數學計算了!"
  張三謝過了上帝,保住了他的工作。后來他知道了,f域的變換有一個名字,叫做傅利葉,什么什么... ...
  ----------------------------------------
  再后來,公司開發了一種新的電子產品,輸出信號是無限時間長度的。這次,張三開始學拉普拉斯了......
  后記:
  不是我們學的不好,是因為教材不好,老師講的也不好。
  很欣賞Google的面試題: 用3句話像老太太講清楚什么是數據庫。這樣的命題非常好,因為沒有深入的理解一個命題,沒有仔細的思考一個東西的設計哲學,我們就會陷入細節的泥沼: 背公式,數學推導,積分,做題;而沒有時間來回答"為什么要這樣"。做大學老師的做不到"把厚書讀薄"這一點,講不出哲學層面的道理,一味背書和翻講 ppt,做著枯燥的數學證明,然后責怪"現在的學生一代不如一代",有什么意義嗎?
  第二課 到底什么是頻率 什么是系統?
  這一篇,我展開的說一下傅立葉變換F。注意,傅立葉變換的名字F可以表示頻率的概念(freqence),也可以包括其他任何概念,因為它只是一個概念模 型,為了解決計算的問題而構造出來的(例如時域無限長的輸入信號,怎么得到輸出信號)。我們把傅立葉變換看一個C語言的函數,信號的輸出輸出問題看為IO 的問題,然后任何難以求解的x->y的問題都可以用x->f(x)->f-1(x)->y來得到。
  1. 到底什么是頻率?
  一個基本的假設: 任何信息都具有頻率方面的特性,音頻信號的聲音高低,光的頻譜,電子震蕩的周期,等等,我們抽象出一個件諧振動的概念,數學名稱就叫做頻率。想象在x-y 平面上有一個原子圍繞原點做半徑為1勻速圓周運動,把x軸想象成時間,那么該圓周運動在y軸上的投影就是一個sin(t)的波形。相信中學生都能理解這 個。
  那么,不同的頻率模型其實就對應了不同的圓周運動速度。圓周運動的速度越快,sin(t)的波形越窄。頻率的縮放有兩種模式
  (a) 老式的收音機都是用磁帶作為音樂介質的,當我們快放的時候,我們會感覺歌唱的聲音變得怪怪的,調子很高,那是因為"圓周運動"的速度增倍了,每一個聲音分量的sin(t)輸出變成了sin(nt)。
  (b) 在CD/計算機上面快放或滿放感覺歌手快唱或者慢唱,不會出現音調變高的現象:因為快放的時候采用了時域采樣的方法,丟棄了一些波形,但是承載了信息的輸出波形不會有寬窄的變化;滿放時相反,時域信號填充拉長就可以了。
  2. F變換得到的結果有負數/復數部分,有什么物理意義嗎?
  解釋: F變換是個數學工具,不具有直接的物理意義,負數/復數的存在只是為了計算的完整性。
  3. 信號與系統這們課的基本主旨是什么?
  對于通信和電子類的學生來說,很多情況下我們的工作是設計或者OSI七層模型當中的物理層技術,這種技術的復雜性首先在于你必須確立傳輸介質的電氣特性, 通常不同傳輸介質對于不同頻率段的信號有不同的處理能力。以太網線處理基帶信號,廣域網光線傳出高頻調制信號,移動通信,2G和3G分別需要有不同的載頻 特性。那么這些介質(空氣,電線,光纖等)對于某種頻率的輸入是否能夠在傳輸了一定的距離之后得到基本不變的輸入呢? 那么我們就要建立介質的頻率相應數學模型。同時,知道了介質的頻率特性,如何設計在它上面傳輸的信號才能大到理論上的最大傳輸速率?----這就是信號與 系統這們課帶領我們進入的一個世界。
  當然,信號與系統的應用不止這些,和香農的信息理論掛鉤,它還可以用于信息處理(聲音,圖像),模式識別,智能控制等領域。如果說,計算機專業的課程是數 據表達的邏輯模型,那么信號與系統建立的就是更底層的,代表了某種物理意義的數學模型。數據結構的知識能解決邏輯信息的編碼和糾錯,而信號的知識能幫我們 設計出碼流的物理載體(如果接受到的信號波形是混亂的,那我依據什么來判斷這個是1還是0? 邏輯上的糾錯就失去了意義)。在工業控制領域,計算機的應用前提是各種數模轉換,那么各種物理現象產生的連續模擬信號(溫度,電阻,大小,壓力,速度等) 如何被一個特定設備轉換為有意義的數字信號,首先我們就要設計一個可用的數學轉換模型。
                               
                  4. 如何設計系統?
  設計物理上的系統函數(連續的或離散的狀態),有輸入,有輸出,而中間的處理過程和具體的物理實現相關,不是這們課關心的重點(電子電路設計?)。信號與 系統歸根到底就是為了特定的需求來設計一個系統函數。設計出系統函數的前提是把輸入和輸出都用函數來表示(例如sin(t))。分析的方法就是把一個復雜 的信號分解為若干個簡單的信號累加,具體的過程就是一大堆微積分的東西,具體的數學運算不是這門課的中心思想。
  那么系統有那些種類呢?
  (a) 按功能分類: 調制解調(信號抽樣和重構),疊加,濾波,功放,相位調整,信號時鐘同步,負反饋鎖相環,以及若干子系統組成的一個更為復雜的系統----你可以畫出系統 流程圖,是不是很接近編寫程序的邏輯流程圖? 確實在符號的空間里它們沒有區別。還有就是離散狀態的數字信號處理(后續課程)。
  (b) 按系統類別劃分,無狀態系統,有限狀態機,線性系統等。而物理層的連續系統函數,是一種復雜的線性系統。
  5. 最好的教材?
  符號系統的核心是集合論,不是微積分,沒有集合論構造出來的系統,實現用到的微積分便毫無意義----你甚至不知道運算了半天到底是要作什么。以計算機的觀點來學習信號與系統,最好的教材之一就是>, 作者是UC Berkeley的Edward A.Lee and Pravin Varaiya----先定義再實現,符合人類的思維習慣。國內的教材通篇都是數學推導,就是不肯說這些推導是為了什么目的來做的,用來得到什么,建設什 么,防止什么;不去從認識論和需求上討論,通篇都是看不出目的的方法論,本末倒置了。
  第三課 抽樣定理是干什么的
  1. 舉個例子,打電話的時候,電話機發出的信號是PAM脈沖調幅,在電話線路上傳的不是話音,而是話音通過信道編碼轉換后的脈沖序列,在收端恢復語音波形。那 么對于連續的說話人語音信號,如何轉化成為一些列脈沖才能保證基本不失真,可以傳輸呢? 很明顯,我們想到的就是取樣,每隔M毫秒對話音采樣一次看看電信號振幅,把振幅轉換為脈沖編碼,傳輸出去,在收端按某種規則重新生成語言。
  那么,問題來了,每M毫秒采樣一次,M多小是足夠的? 在收端怎么才能恢復語言波形呢?
  對于第一個問題,我們考慮,語音信號是個時間頻率信號(所以對應的F變換就表示時間頻率)把語音信號分解為若干個不同頻率的單音混合體(周期函數的復利葉 級數展開,非周期的區間函數,可以看成補齊以后的周期信號展開,效果一樣),對于最高頻率的信號分量,如果抽樣方式能否保證恢復這個分量,那么其他的低頻 率分量也就能通過抽樣的方式使得信息得以保存。如果人的聲音高頻限制在3000Hz,那么高頻分量我們看成sin(3000t),這個sin函數要通過抽 樣保存信息,可以看為: 對于一個周期,波峰采樣一次,波谷采樣一次,也就是采樣頻率是最高頻率分量的2倍(奈奎斯特抽樣定理),我們就可以通過采樣信號無損的表示原始的模擬連續 信號。這兩個信號一一對應,互相等價。
  對于第二個問題,在收端,怎么從脈沖序列(梳裝波形)恢復模擬的連續信號呢? 首先,我們已經肯定了在頻率域上面的脈沖序列已經包含了全部信息,但是原始信息只在某一個頻率以下存在,怎么做? 我們讓輸入脈沖信號I通過一個設備X,輸出信號為原始的語音O,那么I(*)X=O,這里(*)表示卷積。時域的特性不好分析,那么在頻率域 F(I)*F(X)=F(O)相乘關系,這下就很明顯了,只要F(X)是一個理想的,低通濾波器就可以了(在F域畫出來就是一個方框),它在時間域是一個 鐘型函數(由于包含時間軸的負數部分,所以實際中不存在),做出這樣的一個信號處理設備,我們就可以通過輸入的脈沖序列得到幾乎理想的原始的語音。在實際 應用中,我們的抽樣頻率通常是奈奎斯特頻率再多一點,3k赫茲的語音信號,抽樣標準是8k赫茲。
  2. 再舉一個例子,對于數字圖像,抽樣定理對應于圖片的分辨率----抽樣密度越大,圖片的分辨率越高,也就越清晰。如果我們的抽樣頻率不夠,信息就會發生混 疊----網上有一幅圖片,近視眼戴眼鏡看到的是愛因斯坦,摘掉眼睛看到的是夢露----因為不帶眼睛,分辨率不夠(抽樣頻率太低),高頻分量失真被混入 了低頻分量,才造成了一個視覺陷阱。在這里,圖像的F變化,對應的是空間頻率。
  話說回來了,直接在信道上傳原始語音信號不好嗎? 模擬信號沒有抗干擾能力,沒有糾錯能力,抽樣得到的信號,有了數字特性,傳輸性能更佳。
  什么信號不能理想抽樣? 時域有跳變,頻域無窮寬,例如方波信號。如果用有限帶寬的抽樣信號表示它,相當于復利葉級數取了部分和,而這個部分和在恢復原始信號的時候,在不可導的點上面會有毛刺,也叫吉布斯現象。
  3. 為什么傅立葉想出了這么一個級數來? 這個源于西方哲學和科學的基本思想: 正交分析方法。例如研究一個立體形狀,我們使用x,y,z三個互相正交的軸: 任何一個軸在其他軸上面的投影都是0。這樣的話,一個物體的3視圖就可以完全表達它的形狀。同理,信號怎么分解和分析呢? 用互相正交的三角函數分量的無限和:這就是傅立葉的貢獻。
  入門第四課 傅立葉變換的復數 小波
  說的廣義一點,"復數"是一個"概念",不是一種客觀存在。
  什么是"概念"? 一張紙有幾個面? 兩個,這里"面"是一個概念,一個主觀對客觀存在的認知,就像"大"和"小"的概念一樣,只對人的意識有意義,對客觀存在本身沒有意義(康德: 純粹理性的批判)。把紙條的兩邊轉一下相連接,變成"莫比烏斯圈",這個紙條就只剩下一個"面"了。概念是對客觀世界的加工,反映到意識中的東西。
  數的概念是這樣被推廣的: 什么數x使得x^2=-1? 實數軸顯然不行,(-1)*(-1)=1。那么如果存在一個抽象空間,它既包括真實世界的實數,也能包括想象出來的x^2=-1,那么我們稱這個想象空間 為"復數域"。那么實數的運算法則就是復數域的一個特例。為什么1*(-1)=-1? +-符號在復數域里面代表方向,-1就是"向后,轉!"這樣的命令,一個1在圓周運動180度以后變成了-1,這里,直線的數軸和圓周旋轉,在復數的空間 里面被統一了。
  因此,(-1)*(-1)=1可以解釋為"向后轉"+"向后轉"=回到原地。那么復數域如何表示x^2=-1呢? 很簡單,"向左轉","向左轉"兩次相當于"向后轉"。由于單軸的實數域(直線)不包含這樣的元素,所以復數域必須由兩個正交的數軸表示--平面。很明 顯,我們可以得到復數域乘法的一個特性,就是結果的絕對值為兩個復數絕對值相乘,旋轉的角度=兩個復數的旋轉角度相加。高中時代我們就學習了迪莫弗定理。 為什么有這樣的乘法性質? 不是因為復數域恰好具有這樣的乘法性質(性質決定認識),而是發明復數域的人就是根據這樣的需求去弄出了這么一個復數域(認識決定性質),是一種主觀唯心 主義的研究方法。為了構造x^2=-1,我們必須考慮把乘法看為兩個元素構成的集合: 乘積和角度旋轉。
  因為三角函數可以看為圓周運動的一種投影,所以,在復數域,三角函數和乘法運算(指數)被統一了。我們從實數域的傅立葉級數展開入手,立刻可以得到形式更 簡單的,復數域的,和實數域一一對應的傅立葉復數級數。因為復數域形式簡單,所以研究起來方便----雖然自然界不存在復數,但是由于和實數域的級數一一 對應,我們做個反映射就能得到有物理意義的結果。
  那么傅立葉變換,那個令人難以理解的轉換公式是什么含義呢? 我們可以看一下它和復數域傅立葉級數的關系。什么是微積分,就是先微分,再積分,傅立葉級數已經作了無限微分了,對應無數個離散的頻率分量沖擊信號的和。 傅立葉變換要解決非周期信號的分析問題,想象這個非周期信號也是一個周期信號: 只是周期為無窮大,各頻率分量無窮小而已(否則積分的結果就是無窮)。那么我們看到傅立葉級數,每個分量常數的求解過程,積分的區間就是從T變成了正負無 窮大。而由于每個頻率分量的常數無窮小,那么讓每個分量都去除以f,就得到有值的數----所以周期函數的傅立葉變換對應一堆脈沖函數。同理,各個頻率分 量之間無限的接近,因為f很小,級數中的f,2f,3f之間幾乎是挨著的,最后挨到了一起,和卷積一樣,這個復數頻率空間的級數求和最終可以變成一個積分 式:傅立葉級數變成了傅立葉變換。注意有個概念的變化:離散的頻率,每個頻率都有一個"權"值,而連續的F域,每個頻率的加權值都是無窮小(面積=0), 只有一個頻率范圍內的"頻譜"才對應一定的能量積分。頻率點變成了頻譜的線。
  因此傅立葉變換求出來的是一個通常是一個連續函數,是復數頻率域上面的可以畫出圖像的東西? 那個根號2Pai又是什么? 它只是為了保證正變換反變換回來以后,信號不變。我們可以讓正變換除以2,讓反變換除以Pi,怎么都行。
                               
               
本文地址:http://www.qingdxww.cn/thread-161270-1-1.html     【打印本頁】

本站部分文章為轉載或網友發布,目的在于傳遞和分享信息,并不代表本網贊同其觀點和對其真實性負責;文章版權歸原作者及原出處所有,如涉及作品內容、版權和其它問題,我們將根據著作權人的要求,第一時間更正或刪除。
您需要登錄后才可以發表評論 登錄 | 立即注冊

廠商推薦

  • Microchip視頻專區
  • 為何選擇集成電平轉換?
  • PIC18-Q71系列MCU概述
  • 無線充電基礎知識及應用培訓教程2
  • 5分鐘詳解定時器/計數器E和波形擴展!
  • 貿澤電子(Mouser)專區
關于我們  -  服務條款  -  使用指南  -  站點地圖  -  友情鏈接  -  聯系我們
電子工程網 © 版權所有   京ICP備16069177號 | 京公網安備11010502021702
快速回復 返回頂部 返回列表
主站蜘蛛池模板: 日本高清视频成人网www | a毛片免费全部播放完整成 a毛片免费看 | 久久天天躁狠狠躁夜夜2020一 | 久久精品视频一区二区三区 | 欧美日韩中文字幕在线视频 | 亚洲人成亚洲精品 | 欧美精品不卡 | 免费h视频在线观看 | 看久久| 国产第一页在线观看 | 天天摸日日操 | 一级毛片免费观看不卡的 | 韩国一级性生活片 | 国产成人aa视频在线观看 | www四虎影院| 亚洲国产成人久久精品动漫 | 护土与老板在办公室bd中文版 | 久久精品成人一区二区三区 | 妻子的诱惑中文版在线免费观看 | 新版天堂资源中文8在线 | 欧美高清在线视频 | 碰操| 精品卡通动漫在线观看视频一区 | 亚洲免费网站 | 厚颜无耻韩国动漫免费观看5 | 久久综合视频网 | 天天操天天干天天玩 | 国产日日夜夜 | 国产特黄一级毛片特黄 | 亚洲三级在线观看 | 青青草国产精品人人爱99 | 日韩视频在线观看免费 | 欧美在线免费看 | 欧美视频免费在线播放 | 免费三级网站 | 亚洲国产精品久久婷婷 | 国产福利免费 | 久久久99精品免费观看精品 | 欧美丝袜高跟鞋一区二区 | 日韩免费不卡视频 | 日本玖玖|