在光纖通信系統中,信息由LED或LD發出的光波所攜帶,光波就是載波。 把信息加載到光波上的過程就是調制。光調制方式按調制信號的形式可分為模擬信號調制和數字信號調制。目前,數字調制是光纖通信的主要調制方式,也就是通常的PCM編碼調制,以二進制數字信號“1”或“0”對光載波進行通斷調制,并進行脈沖編碼(PCM)。數字調制的優點是抗干擾能力強,中斷時噪聲及色散的影響不積累,因此可實現大容量、長距離傳輸。 1 光發射機 簡單地講,光傳輸系統中一個基本的光發射機主要包括光發射器件及其驅動電路。光發射器件有發光二級管(LED)、激光二級管(LD)或激光調制器(LM);驅動電路為系統光源提供合適的“開”、“關”電流。 1.1 數字光發射機基本結構 在數字光纖通信中,激光發射機的主要組成部分如圖1所示。線路編碼的作用是將數字信號轉換成適合在光纖中傳輸的碼型。調制電路完成數字信號的電-光轉換,將光信號加載到光源的發射光束上,即光調制。而光調制的方式有三種:直接強度調制、間接強度調制和相干調制。光纖通信中常采用直接強度調制(適用于半導體激光器和發光二極管),即通過直接控制發光二極管(LED)或激光二術管(LD)的注入電流產生所需的光數字信號,改變LD或LED的注入電流調整其輸出光功率,實現光強度調制。 理論上講,LED和LD都是電流控制的光發射器件,其中最重要的性能取決于它們的I-P特性,因此最直接的設計方法就是把驅動器設計成受輸入信號控制的電流源,并且必須提供具有規定強度和波形的電流。實際應用中將雙極性晶體管或場效應管(FET)作為電流輸出器件與光發射器件連接,形成電流驅動器。常用的有單端電流驅動器和射極耦合電流驅動器。單端電流驅動器的速度受晶體管和LED或LD的截止過程的影響,因而只能應用在低比特率的場合。高比特率的電流驅動器利用ECL(射極耦合邏輯)電路來設計,即數字調制電路中常用的射極耦合電流開關,其基本電路形式如圖2所示。 1.2 數字調制電路的基本工作原理 圖2所示的射極耦合電流開關實際上是一個一邊為固定輸入VBB,另一邊為信號輸入端的射極耦合差分級,其工作原理對單輸入雙端輸出的差分放大器非常相似,但它只對信號起傳遞作用。其工作原理是:當Vin>VBB時,Q1管導通,Q2管截卡,電流全部流經輸入管;當Vin 2.2 系統測試數據及其抗干擾能力分析 在圖3所示電路中,通過實驗發現電路中R1和R2的取值對電路抗干擾能力有重要的影響。在一定范圍內,若R2不變,增大R1會使Q3基極輸入端信號的動態范圍有所增大,即ECL電流開關的回差電壓(類似施密特觸發器)增大,確保VBB介于該范圍內電流開關能正常工作,因此可以減小噪聲導致Q3基極輸入的ECL信號微小波動而導致電流開關誤動作。開關工作原理如本文1.2所述,以提高抗干擾能力。實驗證明,如果取R1≈10R2時,可使Q3基極輸入的ECL電平信號處于一個適當的動態范圍內,ECL電流開關具有較合適的回差電壓,而Q4基極的參考電壓VBB介于該范圍內,則Q3基極的輸入信號能正常控制激光器LD的驅動電流。 如果去掉芯片MC10H124,理論上分析可知,Q3處于截止狀態;但當接上電平轉換器(MC10H124)后,由于輸出腳外接-2V電壓,實驗結果測得Q3基極電壓升高而工作于放大區。當在MC10H124的信號輸入端⑤腳加上數據信號時,測得Q3和Q1基極的信號如下,Vh3:-0.85V~-1.60V;Vb1:-2.20V~-3.00V,而Q4基極的參考電壓VBB=-1.3V,介于Vb3的動態范圍內,測得Q2的基極電壓約為-2.60V,也處于Vb1的動態范圍內,因此該ECL電流開關能正常工作。 從上面分析可知,VBB保持穩定是影響ECL電路性能的一個很重要的因素,它決定著電流開關的閥值電壓、輸出邏輯電平和抗干擾能力。如果由于某種原因造成VBB發生變化,則可能會使輸出邏輯混亂,而降低ECL電路的抗干擾能力。因此,只要保持ECL電流開關有一個適當的回差電壓和穩定的開關閥值電壓VBB,則有利用提高系統的抗干擾能力。特別是電路工作在超高速情況下,這些問題尤為突出。 |