国产毛片a精品毛-国产毛片黄片-国产毛片久久国产-国产毛片久久精品-青娱乐极品在线-青娱乐精品

探究數(shù)字可調(diào)諧濾波器如何支持寬帶接收器應(yīng)用

發(fā)布時間:2022-9-22 17:48    發(fā)布者:eechina
關(guān)鍵詞: ADMV8913 , 濾波器 , 寬帶接收器
作者:ADI系統(tǒng)應(yīng)用工程經(jīng)理Brad Hall和ADI產(chǎn)品應(yīng)用工程師David Mailloux

引言

為了不斷減小尺寸、重量、功率和成本,同時提高或保持性能,RF系統(tǒng)設(shè)計人員有必要評估信號鏈中的每個組件,并尋找創(chuàng)新機會。由于通常濾波器會占用大量的電路板空間,因此這是考慮減小尺寸時尋求突破的重點領(lǐng)域。

同時,接收器的架構(gòu)也在不斷發(fā)展,模數(shù)轉(zhuǎn)換器(ADC)能夠以更高的輸入頻率采樣。隨著ADC輸入頻率的提高,信號鏈中對濾波器的限制也發(fā)生了變化。一般來說,這種趨勢意味著對濾波器的抑制要求有所放寬,這為進一步優(yōu)化尺寸和調(diào)諧性能提供了機會。

在開始探索之前,首先將概述射頻信號鏈和各項定義,以便說明需要使用濾波器的位置及其原因。此外,回顧傳統(tǒng)技術(shù)也有助于洞察現(xiàn)狀。然后,通過比較這些傳統(tǒng)技術(shù)和最新的產(chǎn)品解決方案,可以清楚地看到系統(tǒng)設(shè)計人員如何輕松實現(xiàn)他們的目標(biāo)。

RF信號鏈概述

圖1顯示了覆蓋2GHz至18GHz的典型寬帶信號鏈。該信號鏈的基本工作原理如下:天線接收的頻率范圍很廣,將頻率轉(zhuǎn)換為ADC能夠進行數(shù)字化處理的中頻信號之前,需要進行一系列放大、濾波和衰減控制(射頻前端)。此框圖中的濾波功能可分為四大類:

►        預(yù)選器亞倍頻程濾波
►        鏡像/中頻信號抑制
►        LO諧波
►        抗混疊


圖1.2 Ghz至18 GHz接收器框圖

預(yù)選器亞倍頻程濾波需要靠近信號鏈的起點,用于解決二階交調(diào)失真(IMD2)雜散問題,這類問題在有干擾信號(也稱為阻斷信號)的情況下會出現(xiàn)。當(dāng)兩個帶外(OOB)雜散相加或相減并形成一個帶內(nèi)雜散時,就會發(fā)生這種情況,這可能會掩蓋目標(biāo)信號。亞倍頻程濾波器可以在這些干擾信號到達(dá)信號鏈的非線性元件(如放大器或混頻器)之前將其去除。通常,亞倍頻程濾波器的絕對帶寬要求會隨著中心頻率的降低而變得更窄。例如,2GHz至18GHz信號鏈的第一頻帶可能僅覆蓋2GHz至3GHz,并且需要在1.5GHz的低壓側(cè)(F_high/2)和4GHz的高壓側(cè)(F_low × 2)具有良好的抑制,而信號鏈的最高頻帶可能覆蓋12GHz至18GHz,在9GHz的低壓側(cè)和24GHz的高壓側(cè)具有良好的抑制。這些差異意味著需要更多的濾波器來覆蓋低頻段,而不是高頻段。預(yù)選器濾波的頻譜示例如圖2所示。


圖2.(a)亞倍頻程預(yù)選可減輕IMD2問題;(b)濾波器頻帶隨著頻率的增加而變寬

鏡像/中頻抑制濾波通常是在信號鏈的下游,在LNA和混頻器之間。它用于抑制鏡像頻率和不需要的中頻頻率。鏡像是一個頻段,當(dāng)它出現(xiàn)在混頻器輸入端時,將生成與混頻器輸出端目標(biāo)信號振幅相同的信號。鏡像抑制可以通過信號鏈中的幾個組件來實現(xiàn),如預(yù)選濾波器、專用鏡像抑制濾波器和來自于單邊帶(SSB)混頻器的鏡像抑制能力。中頻信號抑制需要在混頻器之前降低中頻頻率的頻譜,避免它們直接泄漏到混頻器上并顯示為不需要的雜散。圖3顯示了一個不需要的鏡像和中頻頻段的頻譜示例。


圖3.(a)必須在混頻器之前抑制的鏡像頻段和(b)中頻頻段

根據(jù)LO生成電路的不同,信號鏈中的這一點對濾波的要求可能會有所不同。輸入混頻器LO端口的目標(biāo)信號是干凈的正弦波或方波。通常,LO電路會產(chǎn)生所需LO信號的次諧波和諧波。這些不需要的信號(見圖4)需要在到達(dá)混頻器之前進行抑制,避免產(chǎn)生不需要的MxN雜散產(chǎn)物。如果LO信號處于單一頻率,那么一個固定帶通濾波器就足夠了,并且可以優(yōu)化為僅通過目標(biāo)信號。在寬帶信號鏈中,通常要實現(xiàn)可調(diào)諧的LO信號,因此需要一組開關(guān)濾波器或一個可調(diào)諧濾波器。


圖4.LO諧波濾波

使用ADC采樣時,系統(tǒng)設(shè)計人員需選擇要進行數(shù)字化處理的奈奎斯特區(qū)。第一個奈奎斯特區(qū)的范圍從DC到fS/2(其中fS是ADC的采樣率)。第二個奈奎斯特區(qū)是從fS/2到fS,以此類推。抗混疊濾波器用于抑制與目標(biāo)奈奎斯特區(qū)相鄰的奈奎斯特區(qū)中的干擾信號。信號鏈中這個位置的干擾信號可能來自不同的來源,比如混頻器中產(chǎn)生的MxN雜散、與目標(biāo)信號相鄰的下變頻信號,或是來自中頻信號鏈中產(chǎn)生的諧波。在進行數(shù)字化處理時,輸入ADC的任何干擾信號都將混疊到第一奈奎斯特區(qū)。不需要的混疊信號的頻譜示例如圖5所示。


圖5.如果沒有足夠的抑制,ADC中的混疊會導(dǎo)致干擾信號出現(xiàn)在某個頻段

阻塞信號

在射頻通信系統(tǒng)中,阻塞信號是一種接收到的干擾輸入信號,它會降低目標(biāo)信號的增益和信納比(SINAD)。阻塞信號可能會直接掩蓋目標(biāo)信號,也可能會產(chǎn)生掩蓋目標(biāo)信號的雜散產(chǎn)物。這些不需要的信號可能是無意或有意干擾的結(jié)果。前一種情況中,它來自相鄰頻譜中運行的另一個射頻通信系統(tǒng)。后一種情況中,它來自惡意干擾系統(tǒng),目的是故意干擾射頻通信或雷達(dá)系統(tǒng)。圖6顯示了阻塞信號和目標(biāo)信號的頻譜示例。


圖6.目標(biāo)信號和阻塞信號

多射頻元件會表現(xiàn)出弱非線性無記憶行為。這意味著它們可以用低階多項式來近似表示。例如,寬帶頻率放大器可由僅包括一階項和三階項的奇數(shù)階多項式建模:



當(dāng)在工作頻率范圍內(nèi),放大器的輸入端存在兩個入射信號時,就像目標(biāo)信號ω1和阻斷信號ω2的情況,輸入信號可描述為:



將輸入等式代入奇數(shù)階多項式可得到以下輸出結(jié)果:



當(dāng)目標(biāo)信號的振幅遠(yuǎn)小于阻塞器信號時,A<


根據(jù)簡化得到的等式4,現(xiàn)在目標(biāo)信號振幅與阻塞信號振幅B密切相關(guān)。由于大多數(shù)目標(biāo)射頻分量是壓縮的,α系數(shù)必須是相反的符號,使得α1α3 < 0。上述兩種說法的結(jié)果是必然的,因為對于較大的阻塞信號振幅來說,目標(biāo)信號的增益趨于零。

濾波器定義

為了解決RF通信系統(tǒng)中干擾信號的問題,工程師們依靠濾波器來減少這些信號并保留目標(biāo)信號。簡單地說,濾波器是一種允許在通帶內(nèi)傳輸頻率和在阻帶內(nèi)抑制頻率的組件。

通常,濾波器的插入損耗(dB)可描述為低通、高通、帶通或帶阻(陷波)。這個術(shù)語指的是所繪制的容許通帶頻率響應(yīng)與增加的頻率之間的關(guān)系。濾波器可以根據(jù)其頻率響應(yīng)波形進一步分類,例如通帶紋波、阻帶紋波,以及它們相對于頻率的滾降速度。為了便于說明,圖7顯示了四種主要的濾波器類型。


圖7.按類型劃分的濾波器波形

除了插入損耗外,濾波器的另一個重要特性是群延遲。群延遲是指傳輸相位相對于頻率的變化率。群延遲的單位是時間(秒),因此這個指標(biāo)可視為特定信號通過濾波器的傳輸時間。單一頻率的傳輸時間本身通常影響不大,但當(dāng)寬帶調(diào)制信號通過濾波器時,群延遲的平坦性就變得很重要,因為它可以在接收信號中引入不同的時間延遲,使信號失真。等式5給出了群延遲的方程,其中θ是相位,ƒ是頻率:



具有明顯插入損耗和群延遲特性的典型濾波器類型有Butterworth、Chebyshev、橢圓和Bessel。每個類型通常由一個階數(shù)來定義,它描述了濾波器中有多少個無功元件。階數(shù)越高,頻率滾降就越快。

在考慮類似階數(shù)的濾波器時,Butterworth濾波器可提供盡量平坦的通帶響應(yīng),但會犧牲頻率滾降,而Chebyshev濾波器則具有很好的頻率滾降,但存在一些通帶紋波。橢圓濾波器(有時稱為Cauer-Chebyshev)比Chebyshev濾波器有更多的頻率滾降,但也因此會在通帶和阻帶中產(chǎn)生紋波。Bessel濾波器的頻率和群延遲響應(yīng)最為平坦,但其頻率滾降性能最差。為了便于說明,圖8顯示了一個五階低通濾波器的理想插入損耗和群延遲,其3 dB頻率(f3 dB)為2Ghz,允許的通帶紋波為1dB,阻帶紋波為50dB。


圖8.五階低通濾波器的插入損耗和群延遲

對于在整個頻率范圍內(nèi)保持恒定相位很重要的系統(tǒng),如雷達(dá)系統(tǒng),相關(guān)頻帶的群延遲平坦度對于避免接收到的脈沖出現(xiàn)意外相位偏差來說至關(guān)重要。假設(shè)接收信號范圍可以覆蓋1GHz或更多,則應(yīng)盡量減少寬頻帶的群延遲平坦度。根據(jù)經(jīng)驗法則,應(yīng)將群延遲平坦度保持在<1ns,但這要取決于系統(tǒng)對相位偏差的容限。圖9顯示了群延遲平坦度分別為2.24ns和0.8ns的濾波器示例。觀察這些波形可以發(fā)現(xiàn),對于更平坦的群延遲來說,整個頻率范圍的相位變化更加一致。


圖9.群延遲平坦度影響與線性相位的偏差:(a)顯示2.24 ns的群延遲平坦度 (b)顯示0.8 ns的平坦度,兩者對比可看出,相位變化與頻率的關(guān)系更一致

最后,用于設(shè)計濾波器的無功元件的品質(zhì)因數(shù)(Q因數(shù))是影響性能的一個重要屬性。品質(zhì)因數(shù)定義為特定電路元件的無功阻抗與串聯(lián)損耗電阻之比。它與技術(shù)工藝和用于實現(xiàn)的物理區(qū)域密切相關(guān)。品質(zhì)系數(shù)越高,頻率響應(yīng)越快,插入損耗越小。

RF通信的傳統(tǒng)濾波技術(shù)

為射頻通信系統(tǒng)設(shè)計濾波器時,有多種技術(shù)可用于實現(xiàn)經(jīng)典型濾波器。傳統(tǒng)上,射頻工程師依靠的是帶有表面貼裝元件的分立式集總元件實現(xiàn),或者是包含印在PCB材料上的傳輸線的分布式元件濾波器。然而,近年來,濾波器基于半導(dǎo)體工藝設(shè)計,允許使用精確的溫度穩(wěn)定無功元件,品質(zhì)系數(shù)得到了改善。此外,半導(dǎo)體工藝支持使用開關(guān)和可調(diào)諧無功元件,這在分立式集總元件實現(xiàn)中可能更具挑戰(zhàn)性。還有體聲波(BAW)、表面聲波(SAW)、低溫共燒陶瓷(LTCC)、腔體濾波器或陶瓷諧振器等其它技術(shù)。

每種方法和技術(shù)都存在權(quán)衡取舍:

集總LC濾波器由PCB上的表面貼裝電感器和電容器來實現(xiàn)。這樣做的好處是便于組裝,然后通過調(diào)整數(shù)值來改變?yōu)V波器的性能。

分布式濾波器設(shè)計為在電介質(zhì)上實現(xiàn)的傳輸線的諧振片(可以集成到PCB中,也可以獨立在一個單獨的電介質(zhì)上),并定向為在某些頻率范圍內(nèi)充當(dāng)準(zhǔn)電感器或準(zhǔn)電容器。它們表現(xiàn)出周期性特征。在某些情況下,會添加集總元件來改進/小型化分布式濾波器。

陶瓷諧振器濾波器使用多個陶瓷諧振器(這是一個分布式元件),通過集總元件進行耦合。耦合元件通常是一個電容,但有時也會使用電感。這種類型的濾波器是分布式和集總元件的混合體。

腔體濾波器由封裝在導(dǎo)電盒內(nèi)的分布式元件(棒)來實現(xiàn)。它們以能夠處理高功率而幾乎沒有損耗而聞名,但要以尺寸和成本為代價。

BAW和SAW技術(shù)可以提供出色的性能,但它們往往在頻率選擇方面有要求,不適合寬帶應(yīng)用。

LTCC濾波器通過將多層分布式傳輸線組合在一個陶瓷封裝中來實現(xiàn),該陶瓷封裝類似于分布式濾波器,可用于多種應(yīng)用,但它是固定的。由于它們是3D堆疊式的,所以最終在PCB上占用的空間很小。

最后,隨著最近半導(dǎo)體性能的提升,集成到半導(dǎo)體中的濾波器支持的頻率范圍也更加寬泛。如果能夠?qū)?shù)字控制元件輕松集成到這些元件中,有助于軟件定義收發(fā)器的采用。總的來說,性能和集成度之間的權(quán)衡取舍為寬帶系統(tǒng)的設(shè)計人員提供了有用的價值。

表1.濾波器類型比較
 頻率范圍可調(diào)諧性尺寸成本 Q因數(shù)
集總LC<6 GHz難以實現(xiàn)$
分布式<50 GHz固定$$中/高
陶瓷諧振器<6 GHz固定$$
腔體<40 GHz固定$$$
SAW/BAW<6 GHz固定$
LTCC<40 GHz固定$
半導(dǎo)體<50 GHz集成數(shù)字調(diào)諧 $$

最新的濾波器解決方案

ADI公司開發(fā)了一個新的數(shù)字調(diào)諧濾波器產(chǎn)品系列,利用增強型半導(dǎo)體工藝和工業(yè)友好型封裝技術(shù)。這項技術(shù)成就了小型、高抑制濾波器,可以緩解接收機中出現(xiàn)的阻塞問題。這些濾波器通過標(biāo)準(zhǔn)串行至并行接口(SPI)通信進行高度配置,具有快速的RF開關(guān)速度。此外,ADI在每個芯片內(nèi)加入了一個128種狀態(tài)的查詢表,以便快速改變?yōu)V波器狀態(tài),實現(xiàn)快速跳頻應(yīng)用。高抑制快速調(diào)諧與寬頻率覆蓋的結(jié)合,使下一代接收器應(yīng)用能夠在不利的頻譜環(huán)境中運行。

使用這項技術(shù)推出的最新產(chǎn)品為ADMV8818和ADMV8913。前者有四個高通濾波器和四個低通濾波器,工作頻率為2GHz至18GHz;后者有一個高通濾波器和低通濾波器,工作頻率為8GHz至12GHz。

ADMV8818是一款高度靈活的濾波器,采用9mm×9mm封裝,可在2GHz和18GHz之間實現(xiàn)可調(diào)諧的帶通、高通、低通或旁路響應(yīng)。該芯片由兩部分組成:輸入部分和輸出部分。輸入部分有四個高通濾波器和一個可選旁路,旁路可通過兩個RFIN開關(guān)進行選擇。同樣,輸出部分有四個低通濾波器和一個可選旁路,旁路可通過兩個RFOUT開關(guān)進行選擇。每個高通和低通濾波器都可以用16種狀態(tài)(4個控制位)進行調(diào)諧,以調(diào)整3dB頻率(f3 dB)。圖10所示為ADMV8818的功能框圖。


圖10.ADMV8818功能框圖

憑借可快速重新配置的靈活結(jié)構(gòu)和較小的外形尺寸,ADMV8818可在2GHz至18GHz頻段上提供全覆蓋,沒有任何死區(qū)。ADMV8818可配置為亞倍頻程預(yù)選濾波器、鏡像或中頻濾波器。當(dāng)在圖11所示的信號鏈中進行配置時,接收器可以保持高靈敏度,并且可以在存在較大的OOB信號時,改用ADMV8818作為預(yù)選器。


圖11.使用ADMV8818作為預(yù)選器和鏡像濾波器的2 Ghz至18 GHz接收器的方框圖

例如,如果在9Ghz頻段附近接收到目標(biāo)信號,但在4.5GHz頻段存在一個強大的OOB阻塞信號,那么該阻塞信號會導(dǎo)致諧波出現(xiàn)在9GHz目標(biāo)信號附近,從而妨礙操作。將ADMV8818配置為一個6GHz至9GHz的帶通濾波器,可允許寬帶信號通過,同時在信號鏈的非線性元件中引起諧波問題之前,適當(dāng)降低阻塞信號的電平。為這種情況配置的ADMV8818的S參數(shù)掃描可覆蓋阻塞信號,如圖12所示。


圖12.ADMV8818配置為6GHz至9GHz帶通濾波器。該濾波器抑制F2–F1、F1+F2、F/2和F×2雜散產(chǎn)物。

典型的2GHz到18GHz預(yù)選濾波器模塊的尺寸比較如圖13所示。其中開關(guān)固定濾波器預(yù)選器組是在陶瓷基板上采用分布式濾波技術(shù)實現(xiàn)的。尺寸根據(jù)市面上的濾波器產(chǎn)品估算。估算時包含了八擲開關(guān),用來比較等效功能。圖中所示的可調(diào)諧BPF是ADMV8818,它覆蓋的頻率范圍相同,并且調(diào)諧靈活性也比開關(guān)式濾波器組更全面。與開關(guān)式濾波器組相比,ADMV8818的占用面積節(jié)省超過75%。接收器信號鏈中的預(yù)選器功能通常在系統(tǒng)的整體尺寸中占有相當(dāng)大的比例,因此在尺寸有限的系統(tǒng)中,這種占用面積節(jié)省至關(guān)重要,利于這些系統(tǒng)可以靈活地在尺寸與性能之間進行權(quán)衡取舍。


圖13.固定開關(guān)的2 GHz至18 GHz BPF(左)與數(shù)字可調(diào)諧2 GHz至18 GHz BPF(右)。占用面積節(jié)省超過75%。

ADMV8913是高通和低通濾波器的組合,采用6mm × 3mm封裝,它專門設(shè)計用于在8Ghz至12GHz的頻率范圍(X波段)內(nèi)工作,插入損耗低至5dB。高通和低通濾波器都可以用16種狀態(tài)(4個控制位)進行調(diào)諧,以調(diào)整3dB頻率(f3 dB)。此外,ADMV8913集成了一個并行邏輯接口,可以在不需要SPI通信的情況下設(shè)置濾波器狀態(tài)。這種并行邏輯接口對于需要快速濾波器響應(yīng)時間的系統(tǒng)來說相當(dāng)有用,因為它消除了SPI處理所需的時間。圖14所示為ADMV8913的功能框圖。


圖14.ADMV8913功能框圖

現(xiàn)代X頻段雷達(dá)系統(tǒng),無論是采用機械轉(zhuǎn)向天線還是高通道數(shù)相控陣波束,通常都依賴于尺寸緊湊、插入損耗低且易于配置的濾波解決方案。由于插入損耗低、尺寸小、數(shù)字接口選項(SPI或并行控制)靈活,ADMV8913非常適合這種應(yīng)用。這些功能特點使它能夠靠近這些系統(tǒng)的前端,確保出色的性能,同時降低集成的復(fù)雜性。

結(jié)論

設(shè)計寬帶接收器的射頻前端時,要考慮的因素有很多。前端的設(shè)計必須能夠處理難以預(yù)測的阻塞情況,同時還能檢測低電平信號。能夠動態(tài)調(diào)整前端濾波性能,以處理這些阻塞信號,這是射頻前端的一個關(guān)鍵特性。ADI新推出的數(shù)字控制可調(diào)諧濾波器IC產(chǎn)品具備出色的性能,并且數(shù)字功能也進行了強化,可滿足眾多前端應(yīng)用的需要。這兩款新產(chǎn)品只是數(shù)字可調(diào)諧濾波器產(chǎn)品組合中眾多新開發(fā)產(chǎn)品中最先推出的兩款。有興趣了解這些產(chǎn)品的客戶,請訪問“數(shù)字可調(diào)諧濾波器”產(chǎn)品頁面,查看最新的數(shù)據(jù)表,或與當(dāng)?shù)卮砺?lián)系,討論具體的終端應(yīng)用。

關(guān)于作者

Brad Hall是ADI公司航空航天和防務(wù)部(位于美國北卡羅來納州格林斯博羅)的RF系統(tǒng)應(yīng)用工程經(jīng)理。他于2015年加入ADI公司。他主要負(fù)責(zé)為航空航天和國防應(yīng)用提供全信號鏈設(shè)計支持和新產(chǎn)品定義。在此之前,他是馬里蘭州Digital Receiver Technology, Inc.的RF工程師。他于2006年獲得馬里蘭大學(xué)的電氣工程學(xué)士學(xué)位,并于2018年獲得約翰霍普金斯大學(xué)的電氣工程碩士學(xué)位。

David Mailloux是ADI公司RF和微波事業(yè)部的產(chǎn)品應(yīng)用工程師。他于2010年和2012年分別獲得馬薩諸塞大學(xué)洛厄爾分校電氣工程學(xué)士學(xué)位和碩士學(xué)位。2010至2015年期間,他在Hittite Microwave and Symmetricom(現(xiàn)已更名為Microchip Technology)就職。他從事半導(dǎo)體和模塊級振蕩器設(shè)計工作,擁有理論知識與實驗工作經(jīng)驗。2015年,他加入ADI公司,擔(dān)任產(chǎn)品應(yīng)用工程師,為高度集成的上/下變頻器和可調(diào)諧濾波器產(chǎn)品提供支持。此外,他還提供壓控振蕩器、鎖相環(huán)、分頻器和倍頻器等領(lǐng)域的技術(shù)支持。

本文地址:http://www.qingdxww.cn/thread-801625-1-1.html     【打印本頁】

本站部分文章為轉(zhuǎn)載或網(wǎng)友發(fā)布,目的在于傳遞和分享信息,并不代表本網(wǎng)贊同其觀點和對其真實性負(fù)責(zé);文章版權(quán)歸原作者及原出處所有,如涉及作品內(nèi)容、版權(quán)和其它問題,我們將根據(jù)著作權(quán)人的要求,第一時間更正或刪除。
您需要登錄后才可以發(fā)表評論 登錄 | 立即注冊

廠商推薦

  • Microchip視頻專區(qū)
  • 了解一下Microchip強大的PIC18-Q24 MCU系列
  • PIC18-Q71系列MCU概述
  • 安靜高效的電機控制——這才是正確的方向!
  • 為何選擇集成電平轉(zhuǎn)換?
  • 貿(mào)澤電子(Mouser)專區(qū)

相關(guān)在線工具

相關(guān)視頻

關(guān)于我們  -  服務(wù)條款  -  使用指南  -  站點地圖  -  友情鏈接  -  聯(lián)系我們
電子工程網(wǎng) © 版權(quán)所有   京ICP備16069177號 | 京公網(wǎng)安備11010502021702
快速回復(fù) 返回頂部 返回列表
主站蜘蛛池模板: 91探花福利精品国产自产在线 | 日本尹人综合香蕉在线观看 | 亚洲精品tv久久久久久久久 | 国产成人aaa在线视频免费观看 | 在线观看日本免费不卡 | 国产欧美一区二区三区免费 | 日本在线观看免费高清 | 精品国产免费一区二区三区五区 | 国产精品盗摄一区二区在线 | 日日舔| 麻豆传煤入口麻豆公司传媒 | 四虎影视永久在线 | 五月天婷婷色图 | 欧美性久久 | 久久r热这里有精品视频 | 亚洲欧美日本在线观看 | 婷婷激情狠狠综合五月 | 激情文学在线视频 | 亚洲第一se情网站 | 免费看特级毛片 | 91精品欧美一区二区三区 | 免费啪视频 | 国产毛片一区二区三区精品 | 亚洲黄色免费看 | 亚洲精品国产手机 | 国产精品成人一区二区不卡 | 亚洲国产91 | 婷婷丁香视频 | 99热这里都是精品 | 99精品热线在线观看免费视频 | 99网站在线观看 | 久久综合爱 | 欧美黑粗硬| 国产一区二区三区精品视频 | 亚洲一区二区三区精品视频 | 国产毛片一区二区 | 日本成人免费在线视频 | 99精品国产自在现线免费下载 | 99re这里只有| 午夜美女福利视频 | 五月天激情婷婷婷久久 |